Pairwise Comparison Models

A Two-Tiered Approach for Predicting Wins and Losses in the NBA

Motivation

- Test Bradley Terry model as the basis for finding strong predictive models for NBA games
- Test the success of an indirect, two-tiered approach to predicting wins
- Only using Win/Loss record might not be optimal

Hypothesis

- Could be more effective to use a twotiered approach
- First identify the broad features that have high correlation with win rate
- Model wins based off of those features
- Predict for those features first and then predict wins

Dean Oliver's Four Factors

- Effective Field Goal Percentage = (Field Goals Made $+0.5^{*}$ Three Pointers Made)/Field Goals Attempted
- Turnover Percentage =

Turnovers/(Field Goals Attempted + 0.44*Free Throw Attempts + Turnovers)

- Offensive Rebound Rate =

Offensive Rebounds/(Offensive Rebounds + Opposition Defensive Rebounds)

- Defensive Rebound Rate =

Defensive Rebound Rate = Defensive Rebounds/(Opposition Offensive Rebounds + Defensive Rebounds)

- Free Throw Factor =

Free Throws Made/Field Goals Attempted

Bradley Terry Application

- The four factors are all rates
- To calculate A's turnover rate against B, we need

1. A's mean turnover rate
2. The league's mean turnover rate
3. The mean turnover rate of teams that play against B

Why Bradley Terry?

- Simple
- Very little data required (only at the team level)
- Far fewer features to predict

Methodology

- Data set 2010-11 NBA season
- $(82 * 30) / 2=1230$ observations
- 861 in training set and 369 in test set (70\%/30\%)

Models

- Two predictive layers in model
- a model for predicting the four factors
- a model for predicting win rate from the four factors
- Reference model
- Only uses win/loss record to predict win rate

Predicting Four Factors

- Only predict on a game using past games
- How many games to include in training sample?
- Two possible options
- Use every game leading up to prediction game
- Use a moving window of size d games to predict

Tuning window size

- Objective: tune d with training set
- Set d=1, 2, 5, 10, 20
- Train on different number of observations
- E.g. when $\mathrm{d}=1$, I start training when every team has played at least 1 game
- Compute MSE for the 5 values of d and also for the case in which every game is included

Results

Window Size	num obs.	Rebound MSE	Turnover MSE	eFG\% MSE	FT factor MSE	Sum of MSE
1	844	0.016501403	0.002960085	0.011684333	0.022131734	0.053277555
2	776	0.011073513	0.002020287	0.007479058	0.02408846	0.044661318
5	693	0.007100297	0.00142125	0.005043673	0.01293233	0.02649755
$\mathbf{1 0}$	$\mathbf{5 3 6}$	$\mathbf{0 . 0 0 6 3 6 2 8}$	$\mathbf{0 . 0 0 1 2 4 9 4 1 9}$	$\mathbf{0 . 0 0 4 4 3 2 8 8 3}$	$\mathbf{0 . 0 0 2 7 7 6 6 6 5}$	$\mathbf{0 . 0 1 4 8 2 1 7 6 7}$
20	371	0.005733524	0.001195112	0.004259816	0.005780949	0.016969401
All games	844	0.00608761	0.001254227	0.004407891	0.009369296	0.021119024

Predicting wins from four factors

- Linear models
- Least squares regression
- Logistic regression
- Non-linear models
- Regression tree
- Classification tree
- Point differential vs Win/Loss
- Multicollinearity with Rebound features

Feature Set

Model Selection

- 10 -fold cross validation, i.e. randomly divide training set into 10 folds

Results

- Best model is logistic regression with a moving window of 10 games

10-Fold Cross Validation

Model	MSE	abs_y_hat -y$)$	$0-1$ Loss
Least squares	9.84896582	2.54035922	0.04298316
Logistic regression	n / a	n / a	0.03716921
Regression tree	74.90737	6.877177	0.2078856
Classification tree	n / a	n / a	0.1962978

Logistic Regression Model

Coefficients:

(Intercept)	-28.976	4.716	-6.145	$8.01 \mathrm{e}-10$	***
TurnoverRate	-109.504	13.350	-8.203	$2.35 \mathrm{e}-16$	***
EFGRate	111.361	12.237	9.101	$<2 \mathrm{e}-16$	***
FreeThrowRate	26.971	3.572	7.550	$4.35 \mathrm{e}-14$	***
OffReboundRate	30.590	4.257	7.186	$6.69 \mathrm{e}-13$	***
DefReboundRate	30.117	4.300	7.005	$2.48 \mathrm{e}-12$	***
OppTurnoverRate	97.897	11.676	8.384	$<2 \mathrm{e}-16$	***
OppEFGRate	-109.903	11.910	-9.228	$<2 \mathrm{e}-16$	***
OppFreeThrowRate	-27.710	3.875	-7.151	$8.64 \mathrm{e}-13$	***

Tune single-tier model

- Compare 0-1 Loss
- Select window size of 20 games

Window Size	num obs.	$0-1$ Loss
1	844	0.4490521
2	776	0.4379562
5	693	0.4007732
10	536	0.3708514
$\mathbf{2 0}$	$\mathbf{3 7 1}$	$\mathbf{0 . 3 4 5 1 4 9 3}$
All games	844	0.3414948

Performance on test set

- Test set of 369 observations

Model	0-1 Loss	Correct Guesses	Total Games
Two-tier model	0.3604336	236	369
Single-tier win/loss	0.3848238	227	369

Compare with other popular models

- Omidiran
- 0-1 Loss
- Dummy model
- Home court advantage 0.4024
- Plus-minus models
- Least squares 0.4073
- Ridge regression 0.3732

Compare with other popular models

- Errors seem to be at least as small as errors in the plus-minus model
- However, motivation of APM is to measure player performance
- But, our models require far fewer features

Conclusion

- Reasonable evidence that models that indirectly predict wins can be successful
- Bradley Terry model can be applied beyond win/loss record
- Sample size in predicting game, i.e. window size

